
Y. Shi et al. (Eds.): ICCS 2007, Part I, LNCS 4487, pp. 1058 – 1065, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Cyberinfrastructure for Contamination Source
Characterization in Water Distribution Systems

Sarat Sreepathi1, Kumar Mahinthakumar1, Emily Zechman1, Ranji Ranjithan1,
Downey Brill1, Xiaosong Ma1, and Gregor von Laszewski2

1 North Carolina State University, Raleigh, NC, USA
{sarat_s, gmkumar, emzechma, ranji, brill, xma}@ncsu.edu

2 University of Chicago, Chicago, IL, USA
gregor@mcs.anl.gov

Abstract. This paper describes a preliminary cyberinfrastructure for
contaminant characterization in water distribution systems and its deployment
on the grid. The cyberinfrastructure consists of the application, middleware and
hardware resources. The application core consists of various optimization
modules and a simulation module. This paper focuses on the development of
specific middleware components of the cyberinfrastructure that enables
efficient seamless execution of the application core in a grid environment. The
components developed in this research include: (i) a coarse-grained parallel
wrapper for the simulation module that includes additional features for
persistent execution, (ii) a seamless job submission interface, and (iii) a
graphical real time application monitoring tool. The performance of the
cyberinfrastructure is evaluated on a local cluster and the TeraGrid.

1 Introduction

Urban water distribution systems (WDSs) are vulnerable to accidental and intentional
contamination incidents that could result in adverse human health and safety impacts.
Identifying the source and extent of contamination (“source characterization
problem”) is usually the first step in devising an appropriate response strategy in a
contamination incident. This paper develops and tests a preliminary grid
cyberinfrastructure for solving this problem as part of a larger multidisciplinary
DDDAS [1] project that is developing algorithms and associated middleware tools
leading to a full fledged cyberinfrastructure for threat management in WDSs [2].

The source characterization problem involves finding the contaminant source
location (typically a node in a water distribution system) and its temporal mass
loading history (“release history”) from observed concentrations at several sensor
locations in the network. The release history includes start time of the contaminant
release in the WDS, duration of release, and the contaminant mass loading during this
time. Assuming that we have a “forward simulation model” that can simulate
concentrations at various sensor locations in the WDS for given source
characteristics, the source characterization problem, which is an “inverse problem”,
can be formulated as an optimization problem with the goal of finding a source that
can minimize the difference between the simulated and observed concentrations at the

 Cyberinfrastructure for Contamination Source Characterization in WDSs 1059

sensor nodes. This approach is commonly termed “simulation-optimization” as the
optimization algorithm drives a simulation model to solve the problem. Population
based search methods such as evolutionary algorithms (EAs) are popular methods to
solve this problem owing to their exploratory nature, ease of formulation, flexibility
in handling different types of decision variables, and inherent parallelism. Despite
their many advantages, EAs can be computationally intensive as they may require a
large number of forward simulations to solve an inverse problem such as source
characterization. As the larger DDDAS project relies heavily on EA based methods
[3][4] for solving source characterization and sensor placement problems, an end-to-
end cyberinfrastructure is needed to couple the optimization engine to the simulation
engine, launch the simulations seamlessly on the grid, and track the solution progress
in real-time. Thus the primary objective of this research is to develop a prototype of
this grid cyberinfrastructure.

1.1 Related Work

Existing grid workflow systems such as CoG Kit [5] and Kepler [6] support pre-
processing, post-processing, staging data/programs, and archival of results for a
generic application on the grid. However, they do not provide custom solution to an
application that requires frequent runtime interactions among its components (i.e.,
optimization and simulation components) at a finer granularity. They also require that
the execution time of the core component (e.g., simulation) to be significantly large in
order to amortize the overhead induced by the workflow system. In the WDS
application, a single simulation instance can take anywhere from several milliseconds
to several minutes depending on the network. If we need a system that can cater to
any problem then it would not be feasible to use existing workflow systems (for
smaller problems) without a significant performance penalty. To address this, a
custom framework is developed in this research that can not only aggregate a large
number of small computational tasks but also allows for persistent execution of these
tasks during interactions with the optimization component in a batch environment.
Existing workflow systems also do not provide support for real time monitoring of
simulation-optimization runs from the perspective of a WDS application. Hence a real
time visualization tool has been developed to inform the quantitative progress of the
application to domain scientists.

2 Architecture

The high level architecture of the preliminary cyberinfrastructure developed in this
paper is shown in Fig 1. The optimization toolkit (which is a collection of
optimization methods) interacts with the simulation component (parallel EPANET)
through the middleware. The middleware also communicates with the grid resources
for resource allocation and program execution.

Typically the user invokes a script that launches the optimization toolkit and the
visualization engine from a client workstation. The optimization toolkit then receives
observed data from the sensors (or reads a file that has been synthetically generated)
and then calls the middleware interface to invoke the simulation engine. The

1060 S. Sreepathi et al.

middleware interface then surveys the available resources and launches the simulation
engine on the available resources through batch submission scripts or interactive
commands. The middleware also transmits the sets of decision variables (e.g.,
variables representing source characteristics) generated by the optimization engine to
the simulation engine via files. The simulation engine calculates the fitness values
corresponding to the sets of decision variables sent by the optimization engine. These
are then transmitted back to the optimization and visualization engines via files. The
optimization engine processes this data and sends new sets of decision variables back
to the simulation engine for the next iteration of the algorithm. The simulation engine
maintains a persistent state until all the iterations are completed.

Optimization Toolkit

Sensor DataSensor Data

Grid Resources

Parallel EPANET(MPI)
EPANET-Driver

EPANET EPANET EPANETMiddleware

Visualization

Optimization ToolkitOptimization Toolkit

Sensor DataSensor Data

Grid ResourcesGrid Resources

Parallel EPANET(MPI)
EPANET-Driver

EPANET EPANET EPANET

Parallel EPANET(MPI)Parallel EPANET(MPI)
EPANET-DriverEPANET-Driver

EPANETEPANET EPANETEPANET EPANETEPANETMiddlewareMiddleware

VisualizationVisualization

Fig. 1. Basic Architecture of the Cyberinfrastructure

The following subsections provide a brief description of the component
developments involved in this cyberinfrastructure. Readers interested in additional
details should refer to [7]. Subsequent discussions assume that the optimization
engine uses EA based methods and the problem solved is source identification.
However, the basic architecture is designed to handle any optimization method that
relies on multiple simulation evaluations and any WDS simulation-optimization
problem.

2.1 Simulation Model Enhancements

The simulation engine, EPANET [8] is an extended period hydraulic and water-
quality simulation toolkit developed at EPA. It is originally developed for the
Windows platform and provides a C language library with a well defined API [8]. The
original EPANET was ported to Linux environments and customized to solve
simulation-optimization optimization problems by building a “wrapper” around it. For
testing purposes, limited amount of customization was built into the wrapper to solve
source identification problems. The wrapper uses a file-based communication system
to interoperate with existing EA based optimization tools developed in diverse
development platforms such as Java [3] and Matlab [4]. It also aggregates the
EPANET simulations into a single parallel execution for multiple sets of source
characteristics to amortize the startup costs and minimize redundant computation.

 Cyberinfrastructure for Contamination Source Characterization in WDSs 1061

Parallelization
The parallel version of the wrapper is developed using MPI and referred to as
'pepanet'. The middleware scripts are designed to invoke multiple ‘pepanet’
instantiations depending on resource availability. Within each MPI program, the
master process reads the base EPANET input file (WDS network information,
boundary conditions etc.) and an input file generated by the optimization toolkit that
contains the source characteristics (i.e., decision variables). The master process then
populates data structures for storing simulation parameters as well as the multiple sets
of contamination source parameters via MPI calls. The contamination source
parameter sets are then divided among all the processes equally ensuring static load
balancing. Each process then simulates its assigned group of contamination sources
successively. At the completion of assigned simulations, the master process collects
results from all the member processes and writes it to an output file to be processed
by the optimization toolkit.

Persistency
The evolutionary computing based optimization methods that are currently in use
within the project exhibit the following behavior. The optimization method submits
some evaluations to be computed (generation), waits for the results and then generates
the next set of evaluations that need to be computed. If the simulation program were
to be separately invoked every generation, it needs to wait in a batch environment for
acquiring the requisite computational resources.

But if the pepanet wrapper is made persistent, the program needs to wait in the
queue just once when it is first started. Hence pepanet was enhanced to remain
persistent across generations. In addition to amortizing the startup costs, the persistent
wrapper significantly reduces the wait time in the job scheduling system. The
persistent wrapper achieves this by eliminating some redundant computation across
generations. One all evaluations are completed for a given generation (or evaluation
set) the wrapper maintains a wait state by “polling periodically” for a sequence of
input files whose filenames follow a pattern. The polling frequency can be tuned to
improve performance (see section 3). This pattern for the input and output file names
can be specified as command line arguments facilitating flexibility in placement of
the files as well as standardization of the directory structure for easy archival.

2.2 Job Submission Middleware

Consider the scenario when the optimization toolkit is running on a client workstation
and the simulation code is running at a remote supercomputing center.
Communication between the optimization and simulation programs is difficult due to
the security restrictions placed at current supercomputing centers. The compute nodes
on the supercomputers cannot be directly reached from an external network. The job
submission interfaces also differ from site to site.

In light of these obstacles, a middleware framework based on Python has been
developed to facilitate the interaction between the optimization and simulation
components and to appropriately allocate resources. The middleware component
utilizes public key cryptography to authenticate to the remote supercomputing center
from the client site. The middleware then transfers the file generated by the
optimization component to the simulation component on the remote site using

1062 S. Sreepathi et al.

available file transfer protocols. It then waits for the computations to be completed at
the remote sites and then fetches the output file back to the client site. This process is
repeated until the termination signal is received from the client side (in the event of
solution convergence or reaching iteration limit). The middleware script also polls for
resource availability on the remote sites to allocate appropriate number of processors to
minimize queue wait time by effectively utilizing the backfill window of the resource
scheduler. When more than one supercomputer site is involved, the middleware
divides the simulations proportionally among the sites based on processor availability
and processor speed. A simple static allocation protocol is currently employed.

2.3 Real-Time Visualization

The current visualization toolkit is geared toward the source identification problem
and was developed with the following goals in mind: (i) Visualize the water
distribution system map and the locations where the optimization method is currently
searching for contamination sources, (ii) Visualize how the search is progressing from
one stage (generation) of the optimization algorithm to the next to facilitate
understanding of the convergence pattern of the optimization method. The tool has
been developed using Python, Tkinter and Gnuplot. Fig 2 shows a screenshot of the
visualization tool after the optimization method found the contamination source for an
example problem instance. It shows the map of the water distribution system marking
the “true” source (as it is known in the hypothetical test case) and the estimated
source found by the optimization method. It also provides a plot comparing the
release history of the true source and the estimated source. A multi-threaded
implementation enables the user to interact with the tool’s graphical interface while
the files are being processed in the backend.

Fig. 2. Visualization Tool Interface showing the Water Distribution System Map and
Concentration profile for the true (red) and estimated (green) sources

3 Performance Results

Performance results are obtained for solving a test source identification problem
involving a single source. The sensor data is synthetically generated using a

 Cyberinfrastructure for Contamination Source Characterization in WDSs 1063

hypothetical source. An evolutionary algorithm (EA) is used for solving this problem
[3]. The following platforms are used for evaluating the performance of the
cyberinfrastructure: (i) Neptune, a 11 node Opteron Cluster at NCSU consisting of 22
2.2 GHz AMD Opteron(248) processors and a GigE Interconnect, and (ii) Teragrid
Linux Cluster at NCSA consisting of 887 1.3-1.5 GHz Intel Itanium 2 nodes and a
Myrinet interconnect.

Teragrid results are confined to simulations deployed on a single cluster but with
the optimization component residing on a remote client site. Additional results
including preliminary multi-cluster Teragrid results are available in [7]. The
cyberinfrastructure has also been demonstrated on SURAgrid resources [9]. For
timing purposes, the number of generations in the EA is fixed at 100 generations even
though convergence is usually achieved for the test problem well before the 100th
generation. The population size was varied from 600 to 6000 but the results in this
paper are restricted to the larger population size.

Timers were placed within the main launch script, middleware scripts, optimization
toolkit and the simulation engine to quantify the total time, optimization time,
simulation time, and overhead due to file movements. Additional timers were placed
within the simulation engine to break down the time spent in waiting or “wait time”
(includes the optimization time and all overheads) and time spent in calculations.
Preliminary tests revealed that the waiting time within the simulation code was
exceedingly high when the optimization toolkit and root process of the wrapper
(simulation component) are on different nodes of the cluster. When both are placed on
the same compute node, wait time reduced by a factor of more than 15 to acceptable
values. Additional investigation indicated that these were due to file system issues.
Further optimization of the polling frequency within the simulation engine improved
wait time by an additional factor of 2. Once these optimizations were performed, the
wait time predominantly consisted of optimization calculations, since the overhead is
relatively negligible. Fig 3 illustrates the parallel performance of the application after
these optimizations on the Neptune cluster up to 16 processors. As expected, the
computation time within the simulation engine (parallel component) scales nearly
linearly while the overhead and the optimization time (serial component) remain more
or less constant.

Number of Processors

T
im

e(
s e

c)

Fig. 3. Performance of the application up to 16 processors on Neptune cluster

For timing studies on the Teragrid, the optimization engine was launched on
Neptune and the simulations on the Teragrid cluster. Again, preliminary performance

1064 S. Sreepathi et al.

tests indicated that the wait times were significantly impacted by file system issues.
The performance improved by a factor of three when the application is moved from a
NFS file system to a faster GPFS file system. Further improvement in wait time
(about 15%) was achieved by consolidating the network communications within the
middleware. Fig 4 shows the speedup behavior on the Teragrid cluster for up to 16
processors. While the computation time speeds up nearly linearly the wait time is
much higher when compared to the timings of Neptune (Fig 3). Additional breakdown
on the wait time indicated that 14% was spent in optimization and the remaining 86%
in overheads including file transfer costs. The increased file transfer time is not
unexpected as the transfers occur over a shared network between the geographically
distributed optimization and simulation components. Comparison of simulation times
with Neptune indicates that the Teragrid processors are also about three times slower.

It is noted that the WDS problem solved is relatively small (about 20 seconds
(Neptune) or 1 minute (TeraGrid) per 6000 simulations using 1 processor) thus
making the overheads appear relatively high. As the overhead will remain
approximately constant with increased problem sizes we expect the results to improve
considerably for larger problems. Furthermore, several enhancements are planned to
minimize overheads (see next section).

Number of Processors

T
im

e(
s e

c)

Fig. 4. Performance of the application up to 16 processors on NCSA Teragrid Linux Cluster

4 Conclusions and Future Work

An end-to-end solution for solving WDS contamination source characterization
problems in grid environments has been developed. This involved coarse-grained
parallelization of simulation module, middleware for seamless grid deployment and a
visualization tool for real-time monitoring of application’s progress. Various
performance optimizations such as improving processor placements, minimizing file
system overheads, eliminating redundant computations, amortizing queue wait times,
and multi-threading visualization were carried out to improve turnaround time. Even
with these optimizations, the file movement overheads were significant when the client
and server sites were geographically distributed as in the case of Teragrid. Several
future improvements are planned including optimization algorithm changes that can
allow for overlapping file movements and optimization calculations with simulation
calculations, localizing optimization calculations on remote sites by partitioning
techniques, and minimizing file transfer overhead using grid communication libraries.

 Cyberinfrastructure for Contamination Source Characterization in WDSs 1065

Acknowledgments. This work is supported by National Science Foundation (NSF)
under Grant Nos. CMS-0540316, ANI-0540076, CMS-0540289, CMS-0540177, and
NMI-0330545. Any opinions, findings and conclusions or recommendations
expressed in this material are those of the authors and do not necessarily reflect the
views of the NSF.

References

1. Darema, F. Introduction to the ICCS 2006 Workshop on Dynamic data driven applications
systems. Lecture Notes in Computer Science 3993, pages 375-383, 2006.

2. Mahinthakumar, G., G. von Laszewski, S. Ranjithan, E. D. Brill, J. Uber, K. W. Harrison,
S. Sreepathi, and E. M. Zechman, An Adaptive Cyberinfrastructure for Threat Management
in Urban Water Distribution Systems, Lecture Notes in Computer Science, Springer-Verlag,
pp. 401-408, 2006.(International Conference on Computational Science (3) 2006: 401-408)

3. Zechman, E. M. and S. Ranjithan, “Evolutionary Computation-based Methods for
Characterizing Contaminant Sources in a Water Distribution System,” Journal of Water
Resources Planning and Management, (submitted)

4. Liu, L., E. M. Zechman, E. D. Brill, Jr., G. Mahinthakumar, S. Ranjithan, and J. Uber
“Adaptive Contamination Source Identification in Water Distribution Systems Using an
Evolutionary Algorithm-based Dynamic Optimization Procedure,” Water Distribution
Systems Analysis Symposium, Cincinnati, OH, August 2006

5. CoG Kit Project Website, http://www.cogkit.org
6. Kepler Project Website, http://www.kepler-project.org
7. Sreepathi, S., Cyberinfrastructure for Contamination Source Characterization in Water

Distribution Systems, Master's Thesis, North Carolina State University, December 2006.
8. Sreepathi, S., Simulation-Optimization for Threat Management in Urban Water Systems,

Demo, Fall 2006 Internet2 Meeting, December 2006.
9. Rossman, L.A.. The EPANET programmer’s toolkit. In Proceedings of Water Resources

Planning and Management Division Annual Specialty Conference, ASCE, Tempe, AZ,
1999.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

