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Abstract. This paper describes a preliminary cyberinfrastructure for 
contaminant characterization in water distribution systems and its deployment 
on the grid. The cyberinfrastructure consists of the application, middleware and 
hardware resources. The application core consists of various optimization 
modules and a simulation module. This paper focuses on the development of 
specific middleware components of the cyberinfrastructure that enables 
efficient seamless execution of the application core in a grid environment. The 
components developed in this research include: (i) a coarse-grained parallel 
wrapper for the simulation module that includes additional features for 
persistent execution, (ii) a seamless job submission interface, and (iii) a 
graphical real time application monitoring tool. The performance of the 
cyberinfrastructure is evaluated on a local cluster and the TeraGrid. 

1   Introduction 

Urban water distribution systems (WDSs) are vulnerable to accidental and intentional 
contamination incidents that could result in adverse human health and safety impacts. 
Identifying the source and extent of contamination (“source characterization 
problem”) is usually the first step in devising an appropriate response strategy in a 
contamination incident. This paper develops and tests a preliminary grid 
cyberinfrastructure for solving this problem as part of a larger multidisciplinary 
DDDAS [1] project that is developing algorithms and associated middleware tools 
leading to a full fledged cyberinfrastructure for  threat management in WDSs [2].  

The source characterization problem involves finding the contaminant source 
location (typically a node in a water distribution system) and its temporal mass 
loading history (“release history”) from observed concentrations at several sensor 
locations in the network. The release history includes start time of the contaminant 
release in the WDS, duration of release, and the contaminant mass loading during this 
time. Assuming that we have a “forward simulation model” that can simulate 
concentrations at various sensor locations in the WDS for given source 
characteristics, the source characterization problem, which is an “inverse problem”, 
can be formulated as an optimization problem with the goal of finding a source that 
can minimize the difference between the simulated and observed concentrations at the 
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sensor nodes. This approach is commonly termed “simulation-optimization” as the 
optimization algorithm drives a simulation model to solve the problem. Population 
based search methods such as evolutionary algorithms (EAs) are popular methods to 
solve this problem owing to their exploratory nature, ease of formulation, flexibility 
in handling different types of decision variables, and inherent parallelism. Despite 
their many advantages, EAs can be computationally intensive as they may require a 
large number of forward simulations to solve an inverse problem such as source 
characterization. As the larger DDDAS project relies heavily on EA based methods 
[3][4] for solving source characterization and sensor placement problems, an end-to-
end cyberinfrastructure is needed to couple the optimization engine to the simulation 
engine, launch the simulations seamlessly on the grid, and track the solution progress 
in real-time. Thus the primary objective of this research is to develop a prototype of 
this grid cyberinfrastructure. 

1.1   Related Work 

Existing grid workflow systems such as CoG Kit [5] and Kepler [6] support pre-
processing, post-processing, staging data/programs, and archival of results for a 
generic application on the grid. However, they do not provide custom solution to an 
application that requires frequent runtime interactions among its components (i.e., 
optimization and simulation components) at a finer granularity. They also require that 
the execution time of the core component (e.g., simulation) to be significantly large in 
order to amortize the overhead induced by the workflow system. In the WDS 
application, a single simulation instance can take anywhere from several milliseconds 
to several minutes depending on the network. If we need a system that can cater to 
any problem then it would not be feasible to use existing workflow systems (for 
smaller problems) without a significant performance penalty. To address this, a 
custom framework is developed in this research that can not only aggregate a large 
number of small computational tasks but also allows for persistent execution of these 
tasks during interactions with the optimization component in a batch environment. 
Existing workflow systems also do not provide support for real time monitoring of 
simulation-optimization runs from the perspective of a WDS application. Hence a real 
time visualization tool has been developed to inform the quantitative progress of the 
application to domain scientists.  

2   Architecture 

The high level architecture of the preliminary cyberinfrastructure developed in this 
paper is shown in Fig 1. The optimization toolkit (which is a collection of 
optimization methods) interacts with the simulation component (parallel EPANET) 
through the middleware. The middleware also communicates with the grid resources 
for resource allocation and program execution.  

Typically the user invokes a script that launches the optimization toolkit and the 
visualization engine from a client workstation. The optimization toolkit then receives 
observed data from the sensors (or reads a file that has been synthetically generated) 
and then calls the middleware interface to invoke the simulation engine. The 
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middleware interface then surveys the available resources and launches the simulation 
engine on the available resources through batch submission scripts or interactive 
commands. The middleware also transmits the sets of decision variables (e.g., 
variables representing source characteristics) generated by the optimization engine to 
the simulation engine via files. The simulation engine calculates the fitness values 
corresponding to the sets of decision variables sent by the optimization engine. These 
are then transmitted back to the optimization and visualization engines via files. The 
optimization engine processes this data and sends new sets of decision variables back 
to the simulation engine for the next iteration of the algorithm. The simulation engine 
maintains a persistent state until all the iterations are completed. 
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Grid Resources
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Fig. 1. Basic Architecture of the Cyberinfrastructure 

The following subsections provide a brief description of the component 
developments involved in this cyberinfrastructure. Readers interested in additional 
details should refer to [7]. Subsequent discussions assume that the optimization 
engine uses EA based methods and the problem solved is source identification. 
However, the basic architecture is designed to handle any optimization method that 
relies on multiple simulation evaluations and any WDS simulation-optimization 
problem. 

2.1   Simulation Model Enhancements 

The simulation engine, EPANET [8] is an extended period hydraulic and water-
quality simulation toolkit developed at EPA. It is originally developed for the 
Windows platform and provides a C language library with a well defined API [8]. The 
original EPANET was ported to Linux environments and customized to solve 
simulation-optimization optimization problems by building a “wrapper” around it. For 
testing purposes, limited amount of customization was built into the wrapper to solve 
source identification problems. The wrapper uses a file-based communication system 
to interoperate with existing EA based optimization tools developed in diverse 
development platforms such as Java [3] and Matlab [4]. It also aggregates the 
EPANET simulations into a single parallel execution for multiple sets of source 
characteristics to amortize the startup costs and minimize redundant computation. 
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Parallelization 
The parallel version of the wrapper is developed using MPI and referred to as 
'pepanet'. The middleware scripts are designed to invoke multiple ‘pepanet’ 
instantiations depending on resource availability.  Within each MPI program, the 
master process reads the base EPANET input file (WDS network information, 
boundary conditions etc.) and an input file generated by the optimization toolkit that 
contains the source characteristics (i.e., decision variables). The master process then 
populates data structures for storing simulation parameters as well as the multiple sets 
of contamination source parameters via MPI calls. The contamination source 
parameter sets are then divided among all the processes equally ensuring static load 
balancing. Each process then simulates its assigned group of contamination sources 
successively. At the completion of assigned simulations, the master process collects 
results from all the member processes and writes it to an output file to be processed 
by the optimization toolkit. 

Persistency 
The evolutionary computing based optimization methods that are currently in use 
within the project exhibit the following behavior. The optimization method submits 
some evaluations to be computed (generation), waits for the results and then generates 
the next set of evaluations that need to be computed. If the simulation program were 
to be separately invoked every generation, it needs to wait in a batch environment for 
acquiring the requisite computational resources.  

But if the pepanet wrapper is made persistent, the program needs to wait in the 
queue just once when it is first started. Hence pepanet was enhanced to remain 
persistent across generations. In addition to amortizing the startup costs, the persistent 
wrapper significantly reduces the wait time in the job scheduling system. The 
persistent wrapper achieves this by eliminating some redundant computation across 
generations. One all evaluations are completed for a given generation (or evaluation 
set) the wrapper maintains a wait state by “polling periodically” for a sequence of 
input files whose filenames follow a pattern. The polling frequency can be tuned to 
improve performance (see section 3). This pattern for the input and output file names 
can be specified as command line arguments facilitating flexibility in placement of 
the files as well as standardization of the directory structure for easy archival. 

2.2   Job Submission Middleware 

Consider the scenario when the optimization toolkit is running on a client workstation 
and the simulation code is running at a remote supercomputing center. 
Communication between the optimization and simulation programs is difficult due to 
the security restrictions placed at current supercomputing centers. The compute nodes 
on the supercomputers cannot be directly reached from an external network. The job 
submission interfaces also differ from site to site. 

In light of these obstacles, a middleware framework based on Python has been 
developed to facilitate the interaction between the optimization and simulation 
components and to appropriately allocate resources. The middleware component 
utilizes public key cryptography to authenticate to the remote supercomputing center 
from the client site. The middleware then transfers the file generated by the 
optimization component to the simulation component on the remote site using 
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available file transfer protocols. It then waits for the computations to be completed at 
the remote sites and then fetches the output file back to the client site. This process is 
repeated until the termination signal is received from the client side (in the event of 
solution convergence or reaching iteration limit). The middleware script also polls for 
resource availability on the remote sites to allocate appropriate number of processors to 
minimize queue wait time by effectively utilizing the backfill window of the resource 
scheduler. When more than one supercomputer site is involved, the middleware 
divides the simulations proportionally among the sites based on processor availability 
and processor speed. A simple static allocation protocol is currently employed. 

2.3   Real-Time Visualization 

The current visualization toolkit is geared toward the source identification problem 
and was developed with the following goals in mind: (i) Visualize the water 
distribution system map and the locations where the optimization method is currently 
searching for contamination sources, (ii) Visualize how the search is progressing from 
one stage (generation) of the optimization algorithm to the next to facilitate 
understanding of the convergence pattern of the optimization method. The tool has 
been developed using Python, Tkinter and Gnuplot. Fig 2 shows a screenshot of the 
visualization tool after the optimization method found the contamination source for an 
example problem instance. It shows the map of the water distribution system marking 
the “true” source (as it is known in the hypothetical test case) and the estimated 
source found by the optimization method. It also provides a plot comparing the 
release history of the true source and the estimated source. A multi-threaded 
implementation enables the user to interact with the tool’s graphical interface while 
the files are being processed in the backend. 

 

Fig. 2. Visualization Tool Interface showing the Water Distribution System Map and 
Concentration profile for the true (red) and estimated (green) sources 

3   Performance Results 

Performance results are obtained for solving a test source identification problem 
involving a single source. The sensor data is synthetically generated using a 
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hypothetical source. An evolutionary algorithm (EA) is used for solving this problem 
[3]. The following platforms are used for evaluating the performance of the 
cyberinfrastructure: (i) Neptune, a 11 node Opteron Cluster at NCSU consisting of 22 
2.2 GHz AMD Opteron(248) processors and a GigE Interconnect, and (ii) Teragrid 
Linux Cluster at NCSA consisting of 887 1.3-1.5 GHz Intel Itanium 2 nodes and a 
Myrinet interconnect. 

Teragrid results are confined to simulations deployed on a single cluster but with 
the optimization component residing on a remote client site. Additional results 
including preliminary multi-cluster Teragrid results are available in [7]. The 
cyberinfrastructure has also been demonstrated on SURAgrid resources [9]. For 
timing purposes, the number of generations in the EA is fixed at 100 generations even 
though convergence is usually achieved for the test problem well before the 100th 
generation. The population size was varied from 600 to 6000 but the results in this 
paper are restricted to the larger population size.  

Timers were placed within the main launch script, middleware scripts, optimization 
toolkit and the simulation engine to quantify the total time, optimization time, 
simulation time, and overhead due to file movements. Additional timers were placed 
within the simulation engine to break down the time spent in waiting or “wait time” 
(includes the optimization time and all overheads) and time spent in calculations. 
Preliminary tests revealed that the waiting time within the simulation code was 
exceedingly high when the optimization toolkit and root process of the wrapper 
(simulation component) are on different nodes of the cluster. When both are placed on 
the same compute node, wait time reduced by a factor of more than 15 to acceptable 
values. Additional investigation indicated that these were due to file system issues. 
Further optimization of the polling frequency within the simulation engine improved 
wait time by an additional factor of 2. Once these optimizations were performed, the 
wait time predominantly consisted of optimization calculations, since the overhead is 
relatively negligible. Fig 3 illustrates the parallel performance of the application after 
these optimizations on the Neptune cluster up to 16 processors. As expected, the 
computation time within the simulation engine (parallel component) scales nearly 
linearly while the overhead and the optimization time (serial component) remain more 
or less constant.  
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Fig. 3. Performance of the application up to 16 processors on Neptune cluster 

For timing studies on the Teragrid, the optimization engine was launched on 
Neptune and the simulations on the Teragrid cluster. Again, preliminary performance  
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tests indicated that the wait times were significantly impacted by file system issues. 
The performance improved by a factor of three when the application is moved from a 
NFS file system to a faster GPFS file system. Further improvement in wait time 
(about 15%) was achieved by consolidating the network communications within the 
middleware. Fig 4 shows the speedup behavior on the Teragrid cluster for up to 16 
processors. While the computation time speeds up nearly linearly the wait time is 
much higher when compared to the timings of Neptune (Fig 3). Additional breakdown 
on the wait time indicated that 14% was spent in optimization and the remaining 86% 
in overheads including file transfer costs. The increased file transfer time is not 
unexpected as the transfers occur over a shared network between the geographically 
distributed optimization and simulation components. Comparison of simulation times 
with Neptune indicates that the Teragrid processors are also about three times slower. 

It is noted that the WDS problem solved is relatively small (about 20 seconds 
(Neptune) or 1 minute (TeraGrid) per 6000 simulations using 1 processor) thus 
making the overheads appear relatively high. As the overhead will remain 
approximately constant with increased problem sizes we expect the results to improve 
considerably for larger problems. Furthermore, several enhancements are planned to 
minimize overheads (see next section). 
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Fig. 4. Performance of the application up to 16 processors on NCSA Teragrid Linux Cluster 

4   Conclusions and Future Work 

An end-to-end solution for solving WDS contamination source characterization 
problems in grid environments has been developed. This involved coarse-grained 
parallelization of simulation module, middleware for seamless grid deployment and a 
visualization tool for real-time monitoring of application’s progress. Various 
performance optimizations such as improving processor placements, minimizing file 
system overheads, eliminating redundant computations, amortizing queue wait times, 
and multi-threading visualization were carried out to improve turnaround time. Even 
with these optimizations, the file movement overheads were significant when the client 
and server sites were geographically distributed as in the case of Teragrid. Several 
future improvements are planned including optimization algorithm changes that can 
allow for overlapping file movements and optimization calculations with simulation 
calculations, localizing optimization calculations on remote sites by partitioning 
techniques, and minimizing file transfer overhead using grid communication libraries. 



 Cyberinfrastructure for Contamination Source Characterization in WDSs 1065 

Acknowledgments. This work is supported by National Science Foundation (NSF) 
under Grant Nos. CMS-0540316, ANI-0540076, CMS-0540289, CMS-0540177, and 
NMI-0330545. Any opinions, findings and conclusions or recommendations 
expressed in this material are those of the authors and do not necessarily reflect the 
views of the NSF. 

References 

1. Darema, F. Introduction to the ICCS 2006 Workshop on Dynamic data driven applications 
systems. Lecture Notes in Computer Science 3993, pages 375-383, 2006. 

2. Mahinthakumar, G., G. von Laszewski, S. Ranjithan, E. D. Brill, J. Uber, K. W. Harrison, 
S. Sreepathi, and E. M. Zechman, An Adaptive Cyberinfrastructure for Threat Management 
in Urban Water Distribution Systems, Lecture Notes in Computer Science, Springer-Verlag, 
pp. 401-408, 2006.( International Conference on Computational Science (3) 2006: 401-408)  

3. Zechman, E. M. and S. Ranjithan, “Evolutionary Computation-based Methods for 
Characterizing Contaminant Sources in a Water Distribution System,” Journal of Water 
Resources Planning and Management, (submitted) 

4. Liu, L., E. M. Zechman, E. D. Brill, Jr., G. Mahinthakumar, S. Ranjithan, and J. Uber 
“Adaptive Contamination Source Identification in Water Distribution Systems Using an 
Evolutionary Algorithm-based Dynamic Optimization Procedure,” Water Distribution 
Systems Analysis Symposium, Cincinnati, OH, August 2006  

5. CoG Kit Project Website, http://www.cogkit.org 
6. Kepler Project Website, http://www.kepler-project.org 
7. Sreepathi, S., Cyberinfrastructure for Contamination Source Characterization in Water 

Distribution Systems, Master's Thesis, North Carolina State University, December 2006. 
8. Sreepathi, S., Simulation-Optimization for Threat Management in Urban Water Systems, 

Demo, Fall 2006 Internet2 Meeting, December 2006.  
9. Rossman, L.A.. The EPANET programmer’s toolkit. In Proceedings of Water Resources 

Planning and Management Division Annual Specialty Conference, ASCE, Tempe, AZ, 
1999.  



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice


