
Performance Analysis and Optimization
of the RAMPAGE Metal Alloy Potential

Generation Software
Philip C. Roth

Oak Ridge National Laboratory
Oak Ridge, Tennessee USA

rothpc@ornl.gov

Hongzhang Shan
Lawrence Berkeley National

Laboratory
Berkeley, California USA

hshan@lbl.gov

David Riegner
The Ohio State University
Columbus, Ohio USA
driegner@gmail.com

Nikolas Antolin
The Ohio State University
Columbus, Ohio USA
nantolin@gmail.com

Sarat Sreepathi
Oak Ridge National Laboratory
Oak Ridge, Tennessee USA

sarat@ornl.gov

Leonid Oliker
Lawrence Berkeley National

Laboratory
Berkeley, California USA

LOliker@lbl.gov

Samuel Williams
Lawrence Berkeley National

Laboratory
Berkeley, California USA

swwilliams@lbl.gov

Shirley Moore
Oak Ridge National Laboratory
Oak Ridge, Tennessee USA

mooresv@ornl.gov

Wolfgang Windl
The Ohio State University
Columbus, Ohio USA
windl.1@osu.edu

Abstract
The Rapid Alloy Method for Producing Accurate, General
Empirical potential generation toolkit (RAMPAGE) is a pro-
gram for fitting multicomponent interatomic potential func-
tions for metal alloys. In this paper, we describe a collab-
orative effort between domain scientists and performance
engineers to improve the parallelism, scalability, and main-
tainability of the code. We modified RAMPAGE to use the
Message Passing Interface (MPI) for communication and
synchronization, to use more than one MPI process when
evaluating candidate potential functions, and to have its
MPI processes execute functionality that was previously exe-
cuted by external non-MPI processes. We ported RAMPAGE
to run on the Eos and Titan Cray systems of the United States
Department of Energy (DOE)’s Oak Ridge Leadership Com-
puting Facility (OLCF), and the Cori and Edison systems at
the DOE’s National Energy Research Scientific Computing
Center (NERSC). Our modifications resulted in a 7× speedup
on 8 Eos system nodes, and scalability up to 2048 processes
on the Cori system with Intel Knights Landing processors.

Publication rights licensed to ACM. ACM acknowledges that this contribu-
tion was authored or co-authored by an employee, contractor or affiliate of
the United States government. As such, the Government retains a nonex-
clusive, royalty-free right to publish or reproduce this article, or to allow
others to do so, for Government purposes only.
SEPS’17, October 23, 2017, Vancouver, Canada
© 2017 Copyright held by the owner/author(s). Publication rights licensed
to the Association for Computing Machinery.
ACM ISBN 978-1-4503-5517-9/17/10. . . $15.00
https://doi.org/10.1145/3141865.3141868

To improve maintainability of the RAMPAGE source code,
we introduced several software engineering best practices
to the RAMPAGE developers’ workflow.

CCS Concepts • Software and its engineering → Soft-
ware performance;Collaboration in software development; •
Computingmethodologies→ Parallel algorithms; Molec-
ular simulation;

Keywords Applications, performance engineering, Mes-
sage Passing Interface
ACM Reference Format:
Philip C. Roth, Hongzhang Shan, David Riegner, Nikolas Antolin,
Sarat Sreepathi, Leonid Oliker, Samuel Williams, Shirley Moore,
andWolfgangWindl. 2017. Performance Analysis and Optimization
of the RAMPAGE Metal Alloy Potential Generation Software. In
Proceedings of 4th ACM SIGPLAN International Workshop on Soft-
ware Engineering for Parallel Systems (SEPS’17). ACM, New York,
NY, USA, 10 pages. https://doi.org/10.1145/3141865.3141868

1 Introduction
In this paper, we describe a recent collaboration between
members of the Center for Performance and Design of Nu-
clear Waste Forms and Containers (WastePD) [3], an Energy
Frontier Research Center (EFRC) supported by the United
States Department of Energy (DOE) Office of Science, and
members of the Institute for Sustained Performance, Energy,
and Resilience (SUPER) project of the Office of Science’s Sci-
entific Discovery through Advanced Computing (SciDAC)
program. The Rapid Alloy Method for Producing Accurate,
General Empirical generation toolkit (RAMPAGE) [10, 13, 14]

11

https://doi.org/10.1145/3141865.3141868
https://doi.org/10.1145/3141865.3141868

SEPS’17, October 23, 2017, Vancouver, Canada P.C. Roth et al.

is software that finds multicomponent interatomic potential
functions for metal alloys. RAMPAGE is used to study the
properties of metallic glasses and high-entropy alloys for
use in nuclear waste containers. Our experience illustrates
a collaborative approach to refactoring and re-engineering
an existing application for improved parallelism, scalability,
and maintainability. RAMPAGE uses a genetic algorithm
approach in a master-worker organization, and its initial
implementation could exploit multiple cores within a single
system node. Thus a major focus for our collaboration was
to enable RAMPAGE to use more than one system node, and
to enable its underlying molecular (MD) dynamics simula-
tions to use more than one process when evaluating can-
didate potential functions. We modified RAMPAGE to use
the Message Passing Interface (MPI) [4, 5] for communica-
tion and synchronization, to support multiple MPI processes
for each MD simulation, and to have its MPI processes exe-
cute functionality that was previously accomplished using
externally-invoked, non-MPI processes. We ported the soft-
ware to the OLCF’s Titan Cray XK7 with graphics processing
units (GPUs), OLCF’s Eos Cray XC30 system, NERSC’s Cori
Cray XC40 system with Intel Knights Landing manycore pro-
cessors, and NERSC’s Edison Cray XC30 system. On the Eos
system, our modifications resulted in a 7× speedup on 8 com-
pute nodes. Based on our evaluation of these modifications,
we developed several recommendations for future work to
further improve RAMPAGE’s performance and scalability.
In this experience paper, we describe our analyses, eval-

uate our modifications, and discuss our recommendations
for future RAMPAGE improvements. We emphasize that the
activities we describe were a true collaboration between the
WastePD materials scientists and the SUPER computer scien-
tists. We largely avoided the all-to-common pattern of HPC
performance engineering efforts: computer scientists obtain
an application snapshot and toy problem inputs, analyze
and optimize the code for months or even years in isolation
from the application developers, deliver their final modifi-
cations with claims of large performance gains to the appli-
cation developers, and all involved are frustrated when the
modifications are never incorporated into the application’s
code base. In contrast, throughout this effort we maintained
close communication between the SUPER andWastePD team
members, and members from both teams contributed code
modifications several times throughout the project. WastePD
team members tried intermediate versions produced by the
SUPER team, and adapted their input problem based on its
behavior (e.g., by identifying the reason why some configu-
rations caused molecular dynamics simulations to fail and
by adjusting the input problem’s configuration to avoid that
failure). We don’t claim that our project interactions were
perfect during this brief six-month project—for instance, we
would have liked to progress more in terms of support for
complex alloys—but overall we are very pleased with the
collaboration and its outcomes. We present our experiences

in this paper with the hope that application developers and
performance engineers can adapt our collaborative approach
and avoid our mistakes when working to overcome their
own parallel performance challenges.

2 Background
To find a high quality potential function for a given al-
loy, RAMPAGE uses a genetic algorithm (GA) approach to
generate and evaluate many candidate potential functions.
Each candidate is constructed by combining potential func-
tions for the individual components of the alloy. The soft-
ware uses a traditional master-worker organization. A fit-
ting driver (the master) generates an initial collection of
candidate potentials, and distributes them one at a time to
a collection of worker processes for evaluation. When a
worker receives a candidate potential to evaluate, it uses
the Large-scale Atomic/Molecular Massively Parallel Simu-
lator (LAMMPS) [9] to simulate the behavior of the alloy’s
atoms assuming the candidate potential correctly described
that behavior. After the simulation terminates, the worker
computes a few metrics that capture how well the candidate
potential fared, and returns these evaluation metrics to the
fitting driver. Once the fitting driver receives evaluation met-
rics for all of its initial candidate potentials, it “crosses” high
quality potentials from the initial batch to create a new batch
of candidate potentials. After a user-configurable number of
iterations of this generate-distribute-evaluate cycle, it out-
puts the potential function with the highest quality metric
values as the best potential for the alloy under consideration.

When we started our collaboration on RAMPAGE, it was
implemented as a collection of C++ programs, Bash shell
scripts, and Python scripts that used the file system and com-
mand line arguments to separately-spawned processes for
communication and synchronization. Setting up a problem
involved running several shell scripts that copied a set of tem-
plate scripts and LAMMPS data files into a problem-specific
directory. Those shell scripts configured the templates and
data files for the specific problem using other shell scripts
and Python scripts. When running RAMPAGE itself, the C++
fitting driver managed a collection of worker processes for
evaluating candidate potential functions. The fitting driver
ensured that no more than a user-configurable number of
worker processes were running at any given time. The fit-
ting driver used problem inputs to create a problem-specific
shell script for evaluating a single candidate potential func-
tion. To evaluate each candidate potential, the fitting driver
used the C standard library’s system() function to spawn a
separate shell process that executed a generic worker shell
script to do the evaluation. This worker shell script evalu-
ated its assigned candidate potential using other shell scripts
(including the problem-specific shell script), Python scripts,
and a single-process LAMMPS invocation. The fitting driver
communicated problem definitions and inputs to the worker

12

Performance Analysis and Optimization of the RAMPAGE. . . SEPS’17, October 23, 2017, Vancouver, Canada

process via parameters to the worker shell script and via
the filesystem, and the worker communicated quality metric
values to the driver via the filesystem. The implementation
had no special support for load balancing such as via work
stealing.
HPC experts focused on extreme scale computing might

be tempted to criticize this initial RAMPAGE implementa-
tion as one that is obviously ill-suited for running on HPC
systems, and that should have been developed differently.
In fact, the software has a modular organization with evi-
dence that the developers used several widely-accepted soft-
ware development practices. The initial implementation was
a plausible result of a long-term development activity by
computational scientists that prioritized productivity over
performance (e.g., as evidenced by the widespread use of
shell and Python scripts). Its performance was adequate for
small-scale problems on small-scale systems, and it was only
when the developers attempted to run it on larger-scale sys-
tems that they encountered its performance and scalability
limitations.

3 Modifications
After an initial kickoff meeting to determine objectives and
discuss potential strategies, the teamworked together closely
through regular conference calls and use of a joint code repos-
itory. The primary objective for our RAMPAGE work was to
improve its performance and scalability so that RAMPAGE
users could obtain better quality alloy potential functions
with a given amount of computing resources and in a given
amount of time. Improvements to RAMPAGE’s maintain-
ability were important, but secondary. In this section, we
describe how our modifications to the initial RAMPAGE
implementation meet our objectives.

3.1 Multi-node Scalability
The initial RAMPAGE implementation used the standard C
library’s system() function to spawn external shell script
processes, which in turn spawned single-process LAMMPS
and Python interpreter processes as described in Section 2.
Thus, the initial implementation had no support for creating
worker processes on nodes other than the one running the
fitting driver. To enable RAMPAGE to conduct more simul-
taneous candidate evaluations than can fit in one compute
node, we modified the program to use the MPI library for
communication and synchronization, allowing us to use the
HPC system’s parallel program launcher (e.g., mpirun) for
efficient creation of driver and worker processes on more
than one system node. Worker processes no longer interpret
a shell script. Instead, they run the same executable as the fit-
ting driver (though with different functionality). In addition
to allowing RAMPAGE to use more worker processes than
can comfortably fit on one compute node, this change had a
more subtle benefit: rather than being spawned each time

the driver needs to evaluate a candidate potential, worker
processes are now long-lived and can evaluate multiple can-
didate potentials during their lifetimes, thus minimizing the
overhead of creating and destroying worker processes.

3.2 Scalable, Efficient Communication
The initial RAMPAGE implementation used the file system
and shell script command lines to communicate between the
fitting driver and its worker processes. We replaced these
methods with MPI communication operations. For instance,
instead of using a shell script to copy problem inputs to
locations in the file system where worker processes would
use file naming conventions to find their inputs, the driver
now uses MPI broadcast operations for efficient distribution
of common problem inputs to all workers.
In the initial implementation, after the driver spawned

worker processes it polled its workers to identify when one
of them had written its candidate evaluation quality metrics
to a global results file. The polling logic was complicated
and not reliable, e.g., when the results file is stored on a Net-
work File System (NFS) file system. We modified the driver
to assign work to each worker, and the workers to return
their results to the driver, using MPI point-to-point opera-
tions. After sending work to a worker, the driver issues a
non-blocking receive for the result of that work. When not
doing other work like recording a worker’s quality metric
results or generating new candidate potentials, the driver
uses an MPI “waitany” operation that allows it to sleep un-
til a results message arrives from any of its workers. This
approach lets the driver behave in an asynchronous, event-
driven manner similar to that of the initial RAMPAGE im-
plementation, but without the inefficient and error-prone
approach of polling the filesystem in search of results files
written by each worker. However, as we discuss in Section 5,
unless process placement is carefully managed, this modifi-
cation also has the potential to cause a load imbalance within
the program, or to cause process placement to be misaligned
relative to compute node boundaries.

3.3 Multi-process LAMMPS
When a RAMPAGE worker evaluates a candidate potential,
it uses LAMMPS to simulate the alloy’s behavior assum-
ing the candidate potential was the alloy’s true potential
function. Although LAMMPS can be built as a standalone
parallel program that uses MPI for communication, workers
in the initial RAMPAGE implementation only invoked single-
process LAMMPS runs. When we first introduced MPI into
RAMPAGE and started running it on batch-scheduled OLCF
and NERSC systems, this design choice became a require-
ment: within a batch job, after the job’s controlling shell
script started RAMPAGE with the parallel program launcher,
neither the resulting RAMPAGE processes nor the shell pro-
cesses they spawned could then execute the parallel job

13

SEPS’17, October 23, 2017, Vancouver, Canada P.C. Roth et al.

launcher again to start multi-process LAMMPS runs. Never-
theless, the WastePD team indicated that limiting LAMMPS
runs to a single process performed too poorly for the com-
plex alloy configurations and quality metric calculations they
desired to perform. To enable simulation of more complex
alloys and calculation of more demanding quality metrics,
we added the ability for RAMPAGE workers to run LAMMPS
simulations using multiple processes. Supporting this func-
tionality required a surprising number of significant changes
to RAMPAGE.

To use multiple processes, LAMMPS must be built to use
the MPI library and, when started, must be provided with an
MPI communicator that defines the collection of processes it
should use for its simulation. When run as a standalone par-
allel program, a system’s parallel program launcher creates
the processes for LAMMPS to use, and these processes are
accessible to LAMMPS via the default MPI_COMM_WORLD com-
municator. Because most batch-scheduled HPC systems do
not allow one MPI program to spawn another MPI program,
we could not rely on this approach for running multi-process
LAMMPS simulations from within RAMPAGE. Fortunately,
LAMMPS can be embedded as a C++ object into a host pro-
gram, and manipulated using an application programming
interface (API). In this mode, LAMMPS must be built as a
library and linked into the RAMPAGE executable, and all
RAMPAGE processes that cooperate to run a given LAMMPS
simulation must be part of an MPI communicator that is pro-
vided to the LAMMPS C++ object when it is created.

Our decision to embed LAMMPS into RAMPAGE had a few
ramifications for our RAMPAGE implementation. First, al-
though the MPI standard defines the MPI_Comm_spawn func-
tion for dynamically creating new processes as an MPI pro-
gram runs, few batch-scheduled HPC systems support it,
and so the parallel program launcher must create all the
processes RAMPAGE will use (including those for running
LAMMPS) when it starts RAMPAGE. Given this restriction,
we introduced a hierarchy of MPI communicators and a new
“worker helper” process type into the RAMPAGE organiza-
tion as shown in Figure 1. RAMPAGE now has one com-
municator for communication between driver and workers,
and one “LAMMPS communicator” per worker that specifies
the worker helper processes used for the workers’ LAMMPS
invocations. Because each worker must provide an MPI com-
municator when constructing its LAMMPS object, the RAM-
PAGE driver and worker processes partition the available
processes in MPI_COMM_WORLD into these smaller LAMMPS
communicators when the overall program is first started,
and before creating their LAMMPS objects.
A second consequence of embedding LAMMPS is that it

allows us to reduce the number of filesystem accesses needed
to define LAMMPS simulation inputs and to obtain simula-
tion results. LAMMPS uses a text-based input script to define
and execute a simulation. We modified RAMPAGE workers

to construct this input script in memory rather than writ-
ing it to a file for LAMMPS to read. Furthermore, because
most of these input commands are the same for every candi-
date potential a worker will evaluate, RAMPAGE workers
now construct the common part of the input script once dur-
ing program initialization and reuse it for every LAMMPS
invocation, further reducing the number of file system ac-
cesses compared to the initial RAMPAGE implementation. In
addition to these input commands, LAMMPS reads a small
number of data files during each simulation to evaluate a can-
didate potential function. Although we have not yet modified
our RAMPAGE implementation to do it, we believe RAM-
PAGE could use the same construct-in-memory approach for
these data files as we do with the LAMMPS input commands.

In the initial RAMPAGE implementation, each worker pro-
cess executed a shell script that invoked yet another script
to construct an input data file containing the candidate po-
tential function to be used in the LAMMPS simulation. This
additional script did some setup work and then invoked a
C++ program to construct the LAMMPS file. To avoid los-
ing the benefit of embedding LAMMPS into worker pro-
cesses, we modified this C++ program so that it could be
built as a library that exposes its potential generator as a
function callable by RAMPAGE workers, with inputs and
results passed in memory rather than via the file system.

3.4 Property Calculation Optimization
Embedding LAMMPS also allows RAMPAGE to extract sim-
ulation results directly from the LAMMPS object in memory
rather than parsing them from a LAMMPS output file. The
initial RAMPAGE implementation used shell and Python
scripts to post-process LAMMPS output to compute met-
rics reflecting the quality of the candidate potential function
used in the simulation. Just as we did not want to use ex-
ternal processes to construct LAMMPS input, we did not
want to compute quality metrics from LAMMPS outputs us-
ing external processes. Instead, we modified the RAMPAGE
workers to do the quality metric computation internally. Be-
cause the RAMPAGE developers still wanted to be able to
write the quality metric computations using Python, we ex-
plored the feasibility of embedding a Python interpreter into
each RAMPAGE worker. As with the common LAMMPS in-
put commands, this strategy allows each RAMPAGE worker
to parse the quality metric computation script once at ini-
tialization, rather than each time it evaluates a candidate
potential, and allows the inputs and outputs to the metric
calculation function to be passed in memory rather than via
the file system. However, this strategy also greatly compli-
cates RAMPAGE’s build- and run-time configuration, and
can be especially troublesome on HPC systems like those in
the OLCF that default to statically-linked executables and do
not allow access to a user’s home directory from compute
nodes.

14

Performance Analysis and Optimization of the RAMPAGE. . . SEPS’17, October 23, 2017, Vancouver, Canada

MPI_COMM_WORLD

Driver/Worker	Communicator

Worker0 LAMMPS	
Communicator

Worker1 LAMMPS	
Communicator

Workern-1 LAMMPS	
Communicator

Worker	
Helper0_2

Worker	
Helper0_2

Driver

Worker0 Worker1 Workern-1

Worker	
Helper0_1

Worker	
Helper1_2

Worker	
Helper1_2

Worker	
Helper1_1

Worker	Helpern-1_2

Worker	Helpern-1_2

Worker	Helpern-1_1

Figure 1. Hierarchy of MPI communicators and process types used by RAMPAGE. In this example configuration, RAMPAGE
uses four processes for each LAMMPS simulation.

As an alternative, we investigated an approach that repli-
cates the Python quality metric computation script’s func-
tionality within the C++worker code itself. The Python prop-
erty calculation script uses the polyfit function from the
NumPy Python module [12] to fit a polynomial to LAMMPS
output data. Because it is invoked every time a worker runs
LAMMPS, it is run many thousands of times during a typical
RAMPAGE run. In our alternative implementation, we im-
plemented two variants of the least-squares fitting algorithm
using the Linear Algebra PACKage (LAPACK) [1] and GNU
Scientific Library (GSL) [2]. In addition to reducing the com-
plexity of building and using RAMPAGE, this approach may
also provide a performance benefit: because of their use in
software from many problem domains, HPC system vendors
often provide highly optimized versions of these libraries
such as Cray’s Scientific Libraries (LibSci), Intel’s Math Ker-
nel Library (MKL), and IBM’s Engineering and Scientific
Subroutine Library (ESSL).
We evaluate these approaches in Section 4 and discuss

our recommendations for implementing property metric
calculations in Section 5.

4 Impact
We saw substantial performance and scalability benefits from
our RAMPAGE modifications. Figure 2 shows the elapsed
time required to generate and evaluate 4000 candidate poten-
tials for the Cu-Ni alloy running on the OLCF Eos system. Eos
is a Cray XC30 with 736 nodes, each containing two 8-core
Intel Xeon E5-2670 (Ivy Bridge) processors clocked at 2.6GHz
and with support for two hardware threads. Each node also
contains 64GB SDRAM but no local storage. The nodes are
connected using Cray’s Aries interconnect with a Dragonfly

20 40 60 80 100 120
Processes

1000

2000

3000

4000

5000

6000

7000

8000

9000

El
ap

se
d

Ti
m

e
(s

)

Baseline (limited to 1 node)
Distributed
Multi-process LAMMPS
Optimized Property Calc

Figure 2. RAMPAGE elapsed time for evaluating 4000 Cu-
Ni candidates running on the OLCF Eos system. Note that
baseline version was limited to 16 processes on a single
system node.

network organization [7]. Eos is similar to the National En-
ergy Research Scientific Computing Center (NERSC) Edison
system, but is smaller and uses an earlier generation of the
Intel Xeon Ivy Bridge processor. On this system, we used the
Intel version 17 compilers with the optimization flags -O3
-xHOST -ip -no-prec-div. The figure shows elapsed time
for four versions:

• Baseline: Version with only enough modifications to
run successfully on the OLCF Eos system.

15

SEPS’17, October 23, 2017, Vancouver, Canada P.C. Roth et al.

• Distributed: Version that uses MPI for communication
between fitting driver and worker processes. Invokes
single-process LAMMPS as a separate process when
evaluating candidate potentials, and uses external pro-
cesses to set up and post-process each LAMMPS run.

• Multi-process LAMMPS: MPI-based distributed ver-
sion that invokes LAMMPS as a library, supports mul-
tiple processes per LAMMPS invocation, and inlines
LAMMPS pre- and post-processing.

• Optimized Property-Calc: MPI-based distributed ver-
sion that invokes LAMMPS as a library and utilizes
LAPACK-based least-squares fitting for computing
quality metrics.

For the runs with the multi-process LAMMPS version, we
configured the program so that most workers use two pro-
cesses per LAMMPS invocation. (See Section 5 for further
discussion about why it ismost workers and not all workers.)
In the figure, each data point indicates the average elapsed
time over three runs, and the bars above and below each data
point indicate the min and max elapsed time for those three
runs. Also, the figure shows a horizontal line for the baseline
performance to ease the comparison between the baseline
version’s performance and that of our modified versions, but
recall that the baseline version was limited to running on a
single node.

The figure demonstrates several positive performance and
scalability benefits resulting from our RAMPAGE modifica-
tions. Most fundamentally, our modifications enabled the
program to run on multiple system nodes, thus increasing
its possible throughput for evaluating candidate potential
functions. The resulting scaling behavior was very good: we
observed more than 7× speedup when run on 8 Eos nodes.
We expected good scalability because RAMPAGE evaluates
each candidate potential independently, thus for most of its
run it is operating in an “embarrassingly parallel” manner.
RAMPAGE’s response to process affinity controls varied

across the four versions we measured. The default process
affinity policy on the Eos system is to bind each process to
a specific processor core. Under this policy, any child pro-
cesses that a process creates are bound to the same core as
the parent. Because the original implementation’s master
process creates all worker processes as child processes, this
default policy causes all RAMPAGE processes to share the
same processor core. To avoid this extremely undesirable
situation, we turned off process affinity when running the
original implementation so that the compute node’s oper-
ating system could migrate processes to any compute node
core. For the “Distributed” version, we also achieved slightly
better performance by turning off process affinity than with
the default affinity policy. For the “Multi-process LAMMPS”
and “Optimized Property-Calc” runs, we observed the op-
posite: in these runs, worker processes do not create child

processes and we achieved better performance using the
default process affinity policy.
When run on only one system node, the figure suggests

that our modified versions did not demonstrate a substantial
performance benefit over the baseline version. These results
are slightly deceptive in that the baseline version used an old
LAMMPS version whose force calculations are less accurate
and less computationally demanding than those of the up-to-
date LAMMPS version we used for our “Distributed,” “Multi-
process LAMMPS,” and “Optimized Property-Calc” runs. The
RAMPAGE developers prefer to use the newer version, but it
is not backward-compatible and so we were not able to run
our modified RAMPAGE versions using the older LAMMPS
version without making more extensive modifications to the
initial RAMPAGE version. We believe that if we were able
to make a more direct comparison, our modified RAMPAGE
versions would demonstrate a significant performance bene-
fit over the baseline version even when using only a single
node.

The results shown in the figure also suggest a slight perfor-
mance benefit for our test problemwhen using two processes
per LAMMPS invocation compared to the single-process
LAMMPS configuration used for the “Distributed” runs. We
expected a more dramatic performance benefit with the
multi-process LAMMPS support, and we hypothesize that
the Cu-Ni test problem and the potential evaluation metrics
used in the current implementation are not computationally
demanding enough to overcome the parallel overheads of
using multiple processes for each LAMMPS run.
We used Cray’s LibSci implementation of the LAPACK

library for our “Optimized Property-Calc” runs. We obtained
good performance gains from using the optimized least-
squares fitting implementation compared to the Python im-
plementation. The improvement is not as pronounced at
higher processor counts for this problem because eachworker
process performed fewer polynomial fitting invocations. We
expect that use of a vendor-optimized scientific library will
provide a substantial performance benefit when used in pro-
duction RAMPAGE runs.

4.1 Software Engineering Best Practices
In addition to our performance optimizations and scalability
improvements, we also introduced a few engineering best
practices to the RAMPAGE development workflow. In par-
ticular, we introduced the use of a source code repository
to support change tracking and to simplify concurrent de-
velopment by project team members. The RAMPAGE Git
repository is currently hosted at Bitbucket.org, and although
access is currently limited to project team members, it will
be easy to enable public access whenever we decide to relax
the access controls.

We also introduced a GNU autotools-based configure and
build infrastructure to the RAMPAGE code base. This infras-
tructure eases the difficulty of configuring the software for

16

Performance Analysis and Optimization of the RAMPAGE. . . SEPS’17, October 23, 2017, Vancouver, Canada

use on multiple systems, and is especially useful in situations
where the source code tree is hosted on file systems that are
accessible on multiple systems that differ in their hardware
or software environment. It also unifies several disparate
configuration approaches that were being used in the initial
implementation, reducing the possibility that one part of
the code might be configured to use a different compiler or
compilation flags than another part.

5 Recommendations
We made many modifications to RAMPAGE that resulted in
scalability, performance, and maintainability benefits. Based
on our experiences, we identified several directions for fur-
ther work that we believe will provide further benefit.

5.1 Batching and Load Balance
Currently, the RAMPAGE driver distributes work to its work-
ers one candidate at a time. When a worker reports its re-
sults back to the driver, the driver gives that worker another
candidate to evaluate. In both communication directions,
the amount of data transferred is small. Because candidate
evaluations are independent, and because the fitting driver
constructs a large number of candidates at one time (as op-
posed to constructing a single new candidate only when it
receives results from a worker), there may be some perfor-
mance benefit to having the driver provide candidates to
workers in large batches so as to reduce the number of mes-
sages and increase message size between driver and workers.
At the extreme, when the driver generates C candidates for
evaluation, and has S workers available, it could send C/S
candidates to each worker.

Changes to the number of candidates per work assignment
might also impact the workload balance across workers. The
time required to evaluate each candidate potential function
varies. It depends on factors such as whether its LAMMPS
simulation terminates because it converged or because it
reached a limit on the number of simulation time steps. RAM-
PAGE’s current master-worker organization and its practice
of distributing candidates one-by-one has some inherent
load balancing capabilities. But, as shown in Figure 3, the
current implementation can still suffer from significant load
imbalances at the ends of candidate evaluation phases. That
figure shows a Vampir visualization of an event trace col-
lected using the Score-P [8] data collection library. The trace
was collected from a RAMPAGE run for the Cu-Ni problem
on one Eos node (16 cores), configured for 8 workers, two
candidate batches, and 100 candidates per batch. The time-
line part of the visualization clearly shows a load imbalance
at the end of the candidate evaluation phases. Increasing the
number of candidates per work assignment might exacer-
bate that load imbalance if a worker receives an “unlucky”
work assignment containing several candidates that take
a long time to evaluate. Further investigation is needed to

determine how best to trade-off the messaging overhead re-
duction from increasing the number of candidates per work
assignment against the potential for load imbalance.

5.2 True SPMD Organization
RAMPAGE currently uses a master-worker organization.
Figure 3 clearly shows that while workers are evaluating
candidates, the master is mostly idle. The figure also demon-
strates a negative performance impact under our current
practice of running RAMPAGE with the same number of
processes as the number of available cores. To obtain the
figure, we ran RAMPAGE with 16 processes and 8 work-
ers on 16 cores using Eos’ default process placement policy.
Most workers used two processes for running LAMMPS, and
the timeline visualization clearly shows that a worker and
its corresponding helper process are idle in the same inter-
vals. Because the driver process is allocated its own core,
the first worker (labeled “Master thread:1” in the figure) has
no helper. Interestingly, this worker was not necessarily the
slowest to complete its work. This may reflect the inherent
load-balancing properties of the “one candidate at a time”
approach used in the current RAMPAGE implementation.

There are several ways to address the poor process place-
ment problem. One is to oversubscribe the cores by request-
ing more processes than the number of cores, and to carefully
specify process affinity to cores so that the master and first
worker are bound to the same core. Another is to turn off all
process affinity and let the node’s operating system migrate
processes among cores according to its policy. We might
finesse the problem by using the last MPI rank as the driver
instead of MPI rank 0, so that a system’s default process
affinity policy would be less likely to split worker/helper
communicators across system nodes and sockets within a
node.

Because candidate evaluation in RAMPAGE is embarrass-
ingly parallel, a more attractive alternative for dealing with
the process placement problem is to switch to a true Single
Program Multiple Data (SPMD) organization. With this or-
ganization, each available MPI process would construct and
evaluate their own pool of candidates independently. Each
would repeat the generate-evaluate-communicate cycle until
the desired number of candidates had been evaluated across
all. Once done, the program would use a final reduction to
identify the highest performing candidates and to report
these to the user. This approach has several attractive prop-
erties: it eliminates the driver process that sits idle most of
the time, it avoids workers sitting idle while the driver gener-
ates new candidates, and it is easier to map processes to the
available cores without crossing system or processor socket
boundaries.

5.3 Acceleration
For this project, we targeted systems at OLCF and NERSC.
Both centers feature systems with accelerators: OLCF’s Titan

17

SEPS’17, October 23, 2017, Vancouver, Canada P.C. Roth et al.

Figure 3. Vampir visualization of RAMPAGE event trace from Cu-Ni run on one node of OLCF Eos, showing load imbalance
and poor mapping of processes to the available processor cores.

has graphics processing units, and NERSC’s Cori has Intel
Knights Landing Xeon Phis.

We used Eos for most of our work on OLCF systems, but
we also verified that our modified RAMPAGE implementa-
tion runs on Titan. Because the profile pane of Figure 3 shows
that the majority of RAMPAGE’s total run time is spent
within LAMMPS invocations, we targeted Titan’s GPUs with
a GPU-enabled LAMMPS library.Whenwe ran our test Cu-Ni
problem on Titan, we did not obtain a speedup compared to
the non-GPU version. We attribute this to two factors. First,
Ni-Cu candidate evaluation involves too little computation
to overcome the overhead of transferring data to and from
the system’s GPUs. Second, because we mapped worker pro-
cesses to the available system based on the number of CPU
cores per node, we experienced significant contention for
the single GPU per node. Our experience with Titan was use-
ful, however, in that it suggests that RAMPAGE can support
more complex and computationally demanding problems
than the Cu-Ni problem, and that GPU-accelerated systems
are feasible targets. Future work should involve evaluating
these more demanding problems to GPU accelerated systems
such as the forthcoming OLCF Summit system.
We also ported RAMPAGE to the NERSC Cori platform

with Intel Knights Landing Xeon Phi processors. Each Cori
node is a single-socket Knights Landing processor with 68
cores. Although each 1.4GHz core has smaller peak floating
point performance than the 2.6GHz Intel Xeon E5-2670 (Ivy
Bridge) processors in Eos by about 4.5×, each core supports
4 hardware threads and two 512-bit-wide vector processing

units that provide 6× more available hardware threads and
6×more peak floating point throughput compared to the two
8-core processors in an Eos node. RAMPAGE scaled very well
up to 128 MPI processes within a single Cori node, and as a
result, RAMPAGE achieved similar performance to Eos when
viewed from a “number of nodes” perspective. In fact, the
“Distributed” implementation of RAMPAGE scaled well up
to 16 nodes (16 × 128 MPI ranks) on Cori when run in cache
mode, but larger configurations were limited by file system
I/O performance. Throughout the project our modifications
reduced the number of file system accesses needed during
a RAMPAGE run, as described in Section 3.3 there remain
opportunities to further reduce file system accesses when
evaluating candidate potentials.
Also, because LAMMPS performance is by far the most

important factor determining RAMPAGE performance, we
expect a significant performance improvement from using a
LAMMPS library built using aggressive Intel-specific opti-
mizations [6] instead of library built using common compiler
optimization flags for each tested platform.

5.4 Genetic Algorithm Framework
RAMPAGE uses a GA approach, and a significant part of the
code base deals with the GA functionality (as opposed to can-
didate evaluation). While RAMPAGE supports a specific GA
strategy, there exist heuristic optimization frameworks such
as Optimus-Prime [11] that provide several heuristic search
algorithms including GA and Particle Swarm Optimization.
Optimus-Prime also provides problem-independent support

18

Performance Analysis and Optimization of the RAMPAGE. . . SEPS’17, October 23, 2017, Vancouver, Canada

for distributing work across multiple system nodes and for re-
sults collection. Using such a framework requires a user only
to provide functions that implement the problem-specific
functionality and facilitate exploring several search algo-
rithms to find a suitable match for their problem. Although
we considered implementing RAMPAGEwithin the Optimus-
Prime framework, we found that the initial implementation’s
extensive use of shell and Python scripts hindered our abil-
ity to quickly integrate it into the framework. Now that
we have inlined most of RAMPAGE’s functionality into its
MPI processes, future work should revisit the integration of
RAMPAGE into the Optimus-Prime framework.

5.5 Plug-in Architecture for Quality Metric
Computation

In our current implementation, RAMPAGE workers compute
three quality metrics from LAMMPS simulation results us-
ing either a Python function or a function from a scientific
library such as an LAPACK implementation. The RAMPAGE
developers prefer to implement their quality metric calcula-
tions in Python, and wish to compute more quality metrics
than those currently implemented. However, we found that
embedding a Python interpreter into RAMPAGE workers
greatly increased the difficulty in building RAMPAGE and
configuring it to run on batch-scheduled HPC systems. Fu-
ture work should involve investigation of a plug-in archi-
tecture for alternative implementations of candidate quality
metrics, with compile- or run-time configuration to select
which implementation to use based on the user’s perfor-
mance goals and usage restrictions imposed by the target
system. Integration into the Optimus-Prime GA framework
might provide the benefits of this proposed plug-in architec-
ture as a by-product of integration with the framework.

5.6 Out-of-source Build/Install
Although we added a configure and build infrastructure to
RAMPAGE during this project, our current implementation
does not support building the code outside the source tree
or installing the built programs outside the source tree. Such
capabilities are desirable on some HPC systems such as the
OLCF systems because these systems only allow programs
running on compute nodes to access a scratch parallel file
system whose files are purged after a period of inactivity. On
such systems, the RAMPAGE source tree must be stored in
the parallel file system, and without careful management, it
is easy for a developer to lose files from the source repository
(including those needed by the repository management tool,
Git). For better maintainability, it would be preferable for
the source tree (which is persistent) to be placed in the devel-
oper’s home directory, but the executables and supporting
data files (which can be regenerated or copied from persis-
tent templates) to be installed into the scratch parallel file
system for program runs.

6 Summary
In a recent six-month collaboration between SUPER com-
puter scientists and WastePD materials scientists, we con-
ducted an evaluation of the performance, scalability, and
maintainability of the WastePD project’s RAMPAGE alloy
potential generation software. By enabling it to run on more
than one compute node using MPI-based parallelism, by
enabling it to use more than one MPI process for molecu-
lar dynamics simulations, and by inlining functionality that
previously had been done in separate processes, we greatly
increased RAMPAGE’s throughput capability for evaluat-
ing candidate potential functions. We ported the software
to systems at two prominent DOE computing facilities, and
observed greater than 7× speedup on 8 nodes of a Cray XC30
and scalability up to 2048 processes on a Cray XC40 KNL-
based system. We also introduced software engineering best
practices such as use of a source code repository to sup-
port concurrent development by multiple developers and an
automated configuration and build infrastructure.

Based on our experiences with RAMPAGE, we made sev-
eral recommendations for future work on the program. We
suggested changing the program’s master-worker organiza-
tion to an SPMD organization in which each process gener-
ates and evaluates its own collection of candidate potentials,
communicating only when necessary for its genetic algo-
rithm implementation to cross promising candidates and to
identify the program’s best-known candidates. Because of
the predominance of the molecular dynamics simulations
within the program’s overall run time, we recommended
further investigation into using accelerated and optimized
versions of LAMMPS on GPUs and KNL processors. And
we recommended further consideration of implementing
RAMPAGE in an existing genetic algorithm framework like
Optimus Prime, so as to allow RAMPAGE developers to focus
on implementing the problem-specific code.

During this project, we also identified several recommen-
dations for collaborations between computer scientists and
domain scientists, including:

• Frequent communication is critical. Every project
member should be aware of how the code is changing
and how those modifications impact team members’
ideas about what has been done, what needs to be
done, and what is possible.

• Agree on terminology early. The computer scien-
tists and domain scientists may speak about the same
concept but express it using different words. Don’t just
talk about the statement of work during the project
kick-off meeting, spend time digging into each oth-
ers’ perspectives and make sure that when one part of
the team says “thread,” the other part of the team is
thinking of the same concept.

• Be a hands-on participant. In our project, the do-
main scientists would not have identified problems

19

SEPS’17, October 23, 2017, Vancouver, Canada P.C. Roth et al.

with some of the intermediate implementations un-
less they tried to use them on their own computing
resources, and the computer scientists would not have
been able to deliver something useful to the domain
scientists if they did not track the domain scientists’
modifications to the input problems.

• Take advantage of software engineering technol-
ogy. Software code base management tools that allow
one to track revisions and pursue multiple branches of
development are a must. It is much more valuable to
be able to talk about a version of the code as revision
1234 than it is to say it was the version that Susie was
using on January 10th. A shared “to do” list is also
helpful.

• Trust. Be willing to trust your project teammates,
even if it is early in the project and they haven’t quite
earned it yet. The computer scientists can’t do much
to help with code or problem inputs they can’t access
for hands-on work, and domain scientists probably un-
derstand more about the computer science than many
computer scientists assume.

We hope that by using our description of this project, and our
recommendations for future work and future collaborations,
others can adapt our experiences and recommendations for
their own performance engineering work with applications
targeting leading-edge HPC systems such as those deployed
at the DOE OLCF and NERSC computing facilities.

Acknowledgments
This manuscript has been co-authored by UT-Battelle, LLC,
under contract DE-AC05-00OR22725 with the US Depart-
ment of Energy (DOE). The US government retains and
the publisher, by accepting the article for publication, ac-
knowledges that the US government retains a nonexclusive,
paid-up, irrevocable, worldwide license to publish or repro-
duce the published form of this manuscript, or allow oth-
ers to do so, for US government purposes. DOE will pro-
vide public access to these results of federally sponsored
research in accordance with the DOE Public Access Plan
(http://energy.gov/downloads/doe-public-access-plan).

This material is based upon work supported by the U.S.
Department of Energy, Office of Science, Office of Advanced
Scientific Computing Research under contract number DE-
AC05-00OR22725. This research used resources of the Oak
Ridge Leadership Computing Facility at the Oak Ridge Na-
tional Laboratory, which is supported by the Office of Science
of the U.S. Department of Energy under Contract No. DE-
AC05-00OR22725.

Researchers from LBNL were funded by the Advanced Sci-
entific Computing Research Program in the U.S. Department
of Energy, Office of Science, under Award Number DE-AC02-
05CH11231. This research used resources of the National En-
ergy Research Scientific Computing Center (NERSC), which

is supported by the Office of Science of the U.S. Department
of Energy under Contract No. DE-AC02-05CH11231.
The contributions from OSU were supported as part of

the Center for Performance and Design of Nuclear Waste
Forms and Containers, an Energy Frontier Research Center
funded by the U.S. Department of Energy, Office of Science,
Basic Energy Sciences under Award # DE-SC0016584.

References
[1] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra,

J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, and D.
Sorensen. 1999. LAPACK Users’ Guide (third ed.). Society for Industrial
and Applied Mathematics, Philadelphia, PA.

[2] Mark Galassi et al. 2009. GNU Scientific Library Reference Manual (3nd
ed.). Network Theory Ltd. 592 pages.

[3] Gerald Frankel. 2016. Center for Performance and Design of Nuclear
Waste Forms and Containers. https://science.energy.gov/bes/efrc/
centers/wastepd/. (2016).

[4] William Gropp, Ewing Lusk, and Anthony Skjellum. 1999. Using MPI:
portable parallel programming with the message-passing interface (2nd
ed.). MIT Press, Cambridge, MA.

[5] William Gropp, Rajeev Thakur, and Ewing Lusk. 1999. Using MPI-
2: Advanced Features of the Message Passing Interface. MIT Press,
Cambridge, MA, USA.

[6] James Jeffers, James Reinders, and Avinash Sodani. 2016. Intel Xeon Phi
Processor High Performance Programming (2nd ed.). Morgan Kaufmann.
662 pages.

[7] John Kim, William J. Dally, Steve Scott, and Dennis Abts. 2008.
Technology-Driven, Highly-Scalable Dragonfly Topology. In Proceed-
ings of the 35th International Symposium on Computer Architecture.
Washington, DC USA, 77–88.

[8] Andreas Knüpfer, Christian Rössel, Dieter an Mey, Scott Biersdorff,
Kai Diethelm, Dominic Eschweiler, Markus Geimer, Michael Gerndt,
Daniel Lorenz, Allen Malony, Wolfgang E. Nagel, Yury Oleynik,
Peter Philippen, Pavel Saviankou, Dirk Schmidl, Sameer Shende,
Ronny Tschüter, Michael Wagner, Bert Wesarg, and Felix Wolf. 2012.
Score-P: A Joint Performance Measurement Run-Time Infrastructure
for Periscope,Scalasca, TAU, and Vampir. Springer Berlin Heidelberg,
Berlin, Heidelberg, 79–91.

[9] Steve Plimpton. 1995. Fast parallel algorithms for short-range molecu-
lar dynamics. J. Comput. Phys. 117 (1995), 1–19.

[10] David Riegner, Logan Ward, and Wolfgang Windl. 2017. Welcome
to the EAM Alloy Potential Generator. https://atomistics.osu.edu/
eam-potential-generator/index.php. (2017).

[11] Sarat Sreepathi. 2012. Optimus: A Parallel Optimization Framework
with Topology Aware PSO and Applications (poster). http://ft.ornl.
gov/~sarat/files/sc12-SRC.pdf. (2012).

[12] S. van der Walt, S. C. Colbert, and G. Varoquaux. 2011. The NumPy
Array: A Structure for Efficient Numerical Computation. Computing
in Science Engineering 13, 2 (March 2011), 22–30.

[13] Logan Ward, Anupriya Agrawal, Katheraine M. Flores, and Wolfgang
Windl. 2012. Rapid production of accurate embedded-atom method
potentials for metal alloys. (2012). arXiv:cond-mat.mtrl-sci/1209.0619

[14] Logan Ward, Anupriya Agrawal, and Wolfgang Windl. 2017. Rapid
Alloy Method for Producing Accurage, General Empirical (RAM-
PAGE) Potential Making Toolkit: Software Documentation and
How-To Guide. https://atomistics.osu.edu/eam-potential-generator/
potential-maker.tar.gz. (2017).

20

http://energy.gov/downloads/doe-public-access-plan
https://science.energy.gov/bes/efrc/centers/wastepd/
https://science.energy.gov/bes/efrc/centers/wastepd/
https://atomistics.osu.edu/eam-potential-generator/index.php
https://atomistics.osu.edu/eam-potential-generator/index.php
http://ft.ornl.gov/~sarat/files/sc12-SRC.pdf
http://ft.ornl.gov/~sarat/files/sc12-SRC.pdf
http://arxiv.org/abs/cond-mat.mtrl-sci/1209.0619
https://atomistics.osu.edu/eam-potential-generator/potential-maker.tar.gz
https://atomistics.osu.edu/eam-potential-generator/potential-maker.tar.gz

	Abstract
	1 Introduction
	2 Background
	3 Modifications
	3.1 Multi-node Scalability
	3.2 Scalable, Efficient Communication
	3.3 Multi-process LAMMPS
	3.4 Property Calculation Optimization

	4 Impact
	4.1 Software Engineering Best Practices

	5 Recommendations
	5.1 Batching and Load Balance
	5.2 True SPMD Organization
	5.3 Acceleration
	5.4 Genetic Algorithm Framework
	5.5 Plug-in Architecture for Quality Metric Computation
	5.6 Out-of-source Build/Install

	6 Summary
	Acknowledgments
	References

